当前位置: 首页 > 科研队伍 > 动物消化道微生物 > 教授 > 正文
刘军花
2023年06月25日 作者: 阅读次数:

刘军花

学历学位

研究生学历、农学博士学位

教授

导师类别

博士生导师

专业领域

动物营养与饲料科学

研究方向

反刍动物消化道营养;犊牛/羔羊胃肠道发育与营养调控

教育与工作经历

200309-200706月,东北农业大学,动物科学专业攻读本科

200709-200912月,南京农业大学,动物营养与饲料科学专业攻读硕士

201109-201406月,南京农业大学,动物营养与饲料科学专业攻读博士

201409月至今,在南京农业大学动物科技学院任教

201707-201710月,西澳大学,访问学者

201803-201903月,阿尔伯塔大学,访问学者

联系方式

liujunhua@njau.edu.cn025-84395523

奖励及荣誉

2014年,南京农业大学优秀毕业生;2015年,江苏省优秀博士学位论文;2016年,动科院青年教师科研汇报一等奖;2017年,全国百名优秀博士后基金获得者选介;2019年,南京农业大学钟山学术新秀;2019年,教育部自然科学奖二等奖(排名第三)2021年,南京农业大学优秀本科毕业设计特等奖指导教师;2022年,南京农业大学动科院优秀班主任

参加学术团体及任职情况

刘军花,博士,江西省新干县人,承担动物营养学、饲料学、反刍动物营养、草食动物营养学、动物消化道微生物学消化道微生物研究思路与实验技术等本科生和研究生课程;任全国草食动物健康生产科技创新联盟理事、Small Ruminant Research副主编Frontiers in Microbiology客座编辑等

承担科研项目

1. 国家重点研发计划(青年科学家项目),SQ2022YFF1000085,反刍动物和鱼类中共生纤毛虫和细菌的共性遗传互作机制,2022.12-2027.1150万元,在研,任务负责人

2. 国家自然科学基金重点支持项目(地区联合基金),U22A20512,湘西黄牛瘤胃秸秆纤维高效降解关键微生物的适应性规律与效应机制,2023.01-2026.1262万元,在研,任务负责人

3. 国家重点研发计划子任务,2021YFF1000703-02,基于多组学分析鉴定绵羊胃肠道微生物与宿主互作对性状形成的调控机制,2021.12-2026.11230万元,在研,主持

4. 国家自然科学基金面上项目,32172752,瘤胃源肠内酯调节反刍过渡期羔羊小肠上皮屏障功能的作用及分子机制,2022/01-2025/1274.8万元,在研,主持

5. 中央高校基本科研业务费,新疆塔里木马鹿高效利用荒漠粗饲料的瘤胃微生物及上皮生理响应机制,5万元,2021.01-2021.12结题,主持

6. 南京农业大学动物科技学院青年拔尖人才项目,羔羊瘤胃发育启动的分子机制及调控因子,2019.01-2020.1240万元,结题,主持

7. 国家重点研发计划子任务,2018YFD0501906,东部地区山羊高效安全养殖技术集成与示范推广,2018.6-2021.0640万元,结题,课题骨干

8. 中央高校基本科研业务费,早期断奶损伤羔羊小肠上皮屏障功能的机制与营养干预研究,2018.01-2018.1210万元,结题,主持

9. 国家自然科学基金青年基金,31501980,基于GLP-2信号通路研究高直链淀粉日粮促进羔羊小肠上皮生长的分子机制,2016/01-2018/1224万元,结题,主持

10. 江苏省自然科学基金青年基金,BK20150655,高直链淀粉日粮对羔羊小肠上皮细胞周期的调节及内分泌机理研究,2015/07-2018/0620万元,结题,主持

11. 中国博士后基金特别资助,2016T90474,甜味剂通过GLP-2促进羔羊小肠上皮紧密连接形成的机制,2016/07-2017/0715万元,结题,主持

12. 中国博士后基金面上项目,2015M570462GLP-2促进羔羊小肠上皮细胞增殖的分子机制研究,2015/07-2017/068万元,结题,主持

13. 中央高校基本科研业务费,KJQN201610,基于GLP-2信号通路研究高直链淀粉日粮促进羔羊小肠上皮生长的分子机制,2016/01-2018/1210万元,结题,主持

14. 江苏省博士后科研资助计划,TLR/NF-κB信号通路在SARA引发的瘤胃炎症中的作用机制研究,2014/09-2016/061.5万元,结题,主持

15. 奶牛营养学北京市重点实验室开放课题,kf2016043,基于宏基因组学研究SARA对奶牛瘤胃和后肠菌群结构与功能的影响,2016.05-2017.1210万元,结题,主持

 

论文论著:

1. Jiang Q, Lin LM, Xie F, Jin W, Zhu WY, Wang M, Qiu Q, Li ZP, Liu JH*共同通讯), Mao SY*. Metagenomic insights into microbe-mediated B and K2 vitamin biosynthesis in the gastrointestinal microbiome of ruminants. Microbiome, 2022, 10:109.

2. Yuan Y1, Sun DM1, Qin T1, Mao SY, Zhu WY, Yin YY, Huang J, Heller R, Li ZP*, Liu JH*共同通讯), Qiu Q*. Single-cell transcriptome landscapes of the sheep rumen provides insights into physiological programming development and adaptation in digestive strategies. Zoological Research, 2022, 43(4): 634-647.

3. Wang L, Qi WB, Mao SY, Zhu WY, Liu JH*(通讯作者). Effects of whole corn high-grain diet feeding on ruminal bacterial community and epithelial gene expression related to VFA absorption and metabolism in fattening lambs. Journal of Animal Science, 2022, 100, 1-12.

4. Sun DM, Mao SY, Zhu WY, Liu JH*(通讯作者). Proteomic identification of ruminal epithelial protein expression profiles in response to starter feed supplementation in pre-weaned lambs. Animal Nutrition, 2021, 7: 1271-1282.

5. Sun DM, Yin YY, Guo CZ , Liu LX, Mao SY, Zhu WY, Liu JH*(通讯作者). Transcriptomic analysis reveals the molecular mechanisms of rumen wall morphological and functional development induced by different solid diet introduction in a lamb model. Journal of Animal Science and Biotechnology, 2021, 12:33.

6. Sun DM, Mao SY, Zhu WY, Liu JH*(通讯作者). Effects of starter feeding on caecal mucosal bacterial composition and expression of genes involved in immune and tight junctions in preweaned twin lambs. Anaerobe, 2019, 59:167-175.

7. Sun DM1, Liu LX1, Mao SY, Zhu WY, Liu JH*(通讯作者). Aspartame supplementation in starter accelerates small intestinal epithelial cell cycle and stimulates secretion of glucagon-like peptide-2 in pre-weaned lambs. Journal of Animal Physiology and Animal Nutrition, 2019, 103(5):1338–1350

8. Liu JH, Li HW, Zhu WY, Mao SY*. Dynamic changes in rumen fermentation and bacterial community following rumen fluid transplantation in a sheep model of rumen acidosis: implications for rumen health in ruminants. The FASEB Journal, 2019, 33(7): 8453–8467.

9. Zhang RY1, Liu YJ1, Yin YY, Jin W, Mao SY, Liu JH*(通讯作者). Response of rumen microbiota, and metabolic profiles of rumen fluid, liver and serum of goats to high-grain diets. Animal, 2019, 13(9):1855-1864.

10. Liu LX, Sun DM, Mao SY, Zhu WY, Liu JH*(通讯作者). Infusion of sodium butyrate promotes rumen papillae growth and enhances expression of genes related to rumen epithelial VFA uptake and metabolism in neonatal twin lambs. Journal of Animal Science, 2019, 97(2): 909-921.

11. Liu JH, Xue CX, Sun DM, Zhu WY, Mao SY*. Impact of high-grain diet feeding on mucosa-associated bacterial community and gene expression of tight junction proteins in the small intestine of goats. MicrobiologyOpen, 2019, 8(6): e00745.

12. Sun DM, Mao SY, Zhu WY, Liu JH*(通讯作者). Effect of starter diet supplementation on rumen epithelial morphology and expression of genes involved in cell proliferation and metabolism in pre-weaned lambs. Animal. 2018, 12(11): 2274-2283.

13. Sun DM, Li HW, Mao SY, Zhu WY, Liu JH*(通讯作者). Effects of different starch source of starter on small intestinal growth and endogenous GLP-2 secretion in pre-weaned lambs. Journal of Animal Science. 2018, 96(1): 306-317.

14. Liu JH, Bian GR, Sun DM, Zhu WY, Mao SY*. Starter feeding supplementation alters colonic mucosal bacterial communities and modulates mucosal immune homeostasis in newborn lambs. Frontiers in Microbiology. 2017, 8: 429.

15. Liu JH, Bian GR, Sun DM, Zhu WY, Mao SY*. Starter feeding altered ruminal epithelial bacterial communities and some key immune-related genes expression before weaning in lambs. Journal of Animal Science. 2017, 95(2): 910-921.

16. Liu JH, Zhang ML, Xue CX, Zhu WY, Mao SY*. Characterization and comparison of the temporal dynamics of ruminal bacterial microbiota colonizing rice straw and alfalfa hay within ruminants. Journal of Dairy Science. 2016, 99 (12): 9668-9681.

17. Liu JH, Zhang ML, Zhang RY, Zhu WY, Mao SY*. Comparative studies of the composition of bacterial microbiota associated with the ruminal content, ruminal epithelium and in the faeces of lactating dairy cows. Microbial biotechnology. 2016, 9(2): 257-268.

18. Ye HM1, Liu JH1 (共同一作), Feng PF, Zhu WY, Mao SY*. Grain-rich diets altered the colonic fermentation and mucosa-associated bacterial communities and induced mucosal injuries in goats. Scientific reports. 2016, 6.

19. Liu JH, Bian GR, Zhu WY, Mao SY*. High-grain feeding causes strong shifts in ruminal epithelial bacterial community and expression of Toll-like receptor genes in goats. Frontiers in Microbiology. 2015, 6: 167.

20. Liu JH, Xu TT, Zhu WY, Mao SY*. High-grain feeding alters caecal bacterial microbiota composition and fermentation and results in caecal mucosal injury in goats. British Journal of Nutrition. 2014, 112(3): 416-427.

21. Liu JH, Xu TT, Zhu WY, Mao SY*. A high-grain diet alters the omasal epithelial structure and expression of tight junction proteins in a goat model. The Veterinary Journal. 2014, 201(1): 95-100.

22. Liu JH, Xu TT, Liu YJ, Zhu WY, Mao SY*. A High-grain diet causes massive disruption of ruminal epithelial tight junctions in goats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2013, 305(3): R232-241.

23. Paz EA*, Chua EG, Hassan S, Greeff JC, Palmer DG, Liu SM, Lamichhane B, Sepúlveda N, Liu JH, Tay CY, Martin GB. Bacterial communities in the gastrointestinal tract segments of helminth- 3resistant and helminth-susceptible sheep. Animal Microbiome, 2022

24. Zhang RY, Liu JH, Jiang LS, Wang XF, Mao SY*. The remodeling effects of high-concentrate diets on microbial composition and function in the hindgut of dairy cows, Frontiers in Nutrition, 2021

25. Xie F, Jin W, Si HZ, Yuan Y, Tao Y, Liu JH, ... & Mao SY*. An integrated gene catalog and over 10,000 metagenome-assembled genomes from the gastrointestinal microbiome of ruminants. Microbiome, 2021, 9(1), 1-20.

26. Lin LM, Wang Y, Xu L, Liu JH, Zhu WY, Mao SY*. Microbiome–host co-oscillation patterns in remodeling of colonic homeostasis during adaptation to a high-grain diet in a sheep model. Animal Microbiome, 2020, 2(1).

27. Zhang RY, Liu JH, Jiang LS, Mao SY*. Effect of high-concentrate diets on microbial composition, function, and the VFAs formation process in the rumen of dairy cows. Animal Feed Science and Technology, 2020, 269: 114619.

28. Guo CZ, Xue YF, Yin YY, Sun DM, Xuan HP, Liu JH, Mao SY*. The effect of glycerol or rumen-protected choline chloride on rumen fermentation and blood metabolome in pregnant ewes suffering from negative energy balance. Animal Feed Science and Technology, 2020, 268: 114594

29. Ehab BT, Hossam ES, Xie F, Wang XF, Liu JH, Mao SY*. Effect of pelleted high-grain total mixed ration on rumen morphology, epithelium-associated microbiota and gene expression of proinflammatory cytokines and tight junction proteins in Hu sheep. Animal Feed Science and Technology, 2020, 263: 114453

30. Lin LM1, Xie F1, Sun DM, Liu JH, Zhu WY, Mao SY*. Ruminal microbiome-host crosstalk stimulates the development of the ruminal epithelium in a lamb model. 2019, 7(1): 1-16.

31. Xue Y, Guo C, Hu F, Liu JH, Mao SY*. Hepatic Metabolic Profile Reveals the Adaptive Mechanisms of Ewes to Severe Undernutrition during Late Gestation . Metabolites, 2018

32. Hu F, Xue YF, Guo CZ, Liu JH, Mao SY*. The response of ruminal fermentation, epithelium-associated microbiota, and epithelial barrier function to severe feed restriction in pregnant ewes. Journal of Animal Science, 2018, 96(10): 4293-4305.

33. Xu L, Wang Y, Liu JH, Zhu WY, Mao SY*. Morphological adaptation of sheep’s rumen epithelium to high-grain diet entails alteration in the expression of genes involved in cell cycle regulation, cell proliferation and apoptosis. Journal of Animal Science and Biotechnology, 2018, 9(1): 32.

34. Zhang RY, Jin W, Feng PF, Liu JH, Mao SY*. High-grain diet feeding altered the composition and functions of the rumen bacterial community and caused the damage to the laminar tissues of goats. Animal, 2018: 1-10.

35. Guo CZ, Li HW, Sun DM, Liu JH, Mao SY*. Effects of abomasal supplementation of quercetin on performance, inflammatory cytokines, and matrix metalloproteinase genes expression in goats fed a high-grain diet. Livestock Science, 2018, 209: 20-24.

36. Li HW, Liu JH, Zhu WY, Mao SY*. Intraruminal infusion of oligofructose alters ruminal microbiota and induces acute laminitis in sheep. Journal of Animal Science. 2017, 95(12), 5407-5419.

37. Wang Y, Xu L, Liu JH, Zhu WY, Mao SY*. A High Grain Diet Dynamically Shifted the Composition of Mucosa-Associated Microbiota and Induced Mucosal Injuries in the Colon of Sheep. Frontiers in Microbiology. 2017, 8.

38. Zhang RY, Ye HM, Liu JH, Mao SY*. High-grain diets altered rumen fermentation and epithelial bacterial community and resulted in rumen epithelial injuries of goats. Applied Microbiology and Biotechnology. 2017, 101(18): 6981-6992.

39. Jin W, Xue CX, Liu JH, Yin YY, Zhu WY, Mao SY*. Effects of Disodium Fumarate on In Vitro Rumen Fermentation, the Production of Lipopolysaccharide and Biogenic Amines, and the Rumen Bacterial Community. Current Microbiology. 2017, 74(11), 1337-1342.

40. Wang Y, Liu JH, Yin YY, Zhu WY, Mao SY*. Rumen microbial and fermentation characteristics are affected differently by acarbose addition during two nutritional types of simulated severe subacute ruminal acidosis in vitro. Anaerobe. 2017, 47, 39-46.

41. Mao SY*, Huo WJ, Liu JH, Zhang RY, Zhu WY. In vitro effects of sodium bicarbonate buffer on rumen fermentation, levels of lipopolysaccharide and biogenic amine, and composition of rumen microbiota. Journal of the Science of Food and Agriculture. 2017, 97: 1276-1285.

42. Zhang RY, Liu JH, Mao SY*. Impact of Subacute Ruminal Acidosis (SARA) on Ruminal Microbiome, Lipopolysaccharide and Bioamine and Rumen Epithelial Health of Dairy Cows. 2017, Dairy and Vet Sci J. 2017; 1(2): 555556.DOI: 10.19080/JDVS.2017.01.555556.

43. Bian GR, Ma SQ, Zhu ZG, Su Y, Zoetendal EG, Mackie R, Liu JH, Mu CL, Huang RH, Smidt H, Zhu WY*. Age, Introduction of Solid Feed and Weaning Are More Important Determinants of Gut Bacterial Succession in Piglets Than Breed and Nursing Mother as Revealed by a Reciprocal Cross-Fostering Model. Environmental Microbiology. 2016, 18 (5): 1566-1577.

44. Mao SY*, Zhang ML, Liu JH, Zhu WY. Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: membership and potential function. Scientific reports. 2015, 5.

45. Wang XF, Mao SY, Liu JH, Zhang LL, Cheng YF, Jin W, Zhu WY*. Effect of the gynosaponin on methane production and microbe numbers in a fungus-methanogen co-culture. Journal of Animal and Feed Sciences. 2011, 20: 272–284.

46. 刘军花,张凯,毛胜勇,朱伟云*. 反刍动物瘤胃营养生理研究进展. 动物营养学报,20223410:6178-6184.

47. 张雅丽,刘理想,孙大明,刘军花*(通讯作者). 基于胰岛素样生长因子-Ⅰ信号通路体外研究丁酸钠促进羔羊瘤胃上皮细胞增殖的机理. 动物营养学报,2021,333:1687-1698.

48. 孙大明1,殷雨洋1,吴建良,刘理想,毛胜勇,刘军花*(通讯作者). 早期补饲粉状精料和颗粒料对羔羊生长性能及胃肠道发育的影响. 草业学报,202029(7): 184-192.

49. 王璐,刘理想,孙大明,刘军花*(通讯作者).丁酸调控幼龄反刍动物瘤胃上皮发育研究进展. 生物技术通报, 2020, 36(2): 49-57

50. 刘理想, 孙大明, 毛胜勇, 刘军花*(通讯作者). 胰高血糖素样肽-2对羔羊胃肠道重量, 瘤胃发酵及小肠上皮发育相关基因表达的影响. 畜牧兽医学报, 201849(3): 549-558.

51. 孙大明,李弘伟,毛胜勇,刘军花*(通讯作者). 断奶前补饲不同直/支链淀粉比开食料对羔羊瘤胃上皮发育的影响. 草业学报, 201827(8): 118-125.

52. 孙大明,毛胜勇,刘军花*(通讯作者). 长期高谷物饲喂对山羊瘤胃酸中毒发生的影响. 畜牧兽医学报. 2016, 47(12): 2420-2429.

53. 刘军花,朱伟云,毛胜勇*. 高谷物日粮促进山羊瘤胃上皮单羧酸转运蛋白1及钠钾ATPmRNA的表达. 草业学报. 2017, 26 (2): 95-101.

54. 李弘伟,刘军花,霍文捷,朱伟云,毛胜勇*. 高精料日粮对山羊瘤胃和盲肠发酵及生物胺生成及吸收的影响研究,草业学报. 2017, 26(6): 210-216

55. 金巍, 刘军花, 李袁飞, 成艳芬, 朱伟云*. 甲烷菌对厌氧真菌不同碳源代谢的影响. 微生物学 . 2017, 57(5): 1-6

56. 王晓成,刘军花,朱伟云,毛胜勇*.瘤胃源酵母的分离筛选及对不同底物发酵能力影响.草业学报. 2016, 25(5): 141-148.

57. 薛春旭,叶慧敏,冯泮飞,刘军花,毛胜勇*.高谷物日粮对山羊小肠发酵、肠道结构和微生物菌群数量的影响研究.草业学报. 2016, 25(5): 175-183.

58. 冯泮飞,刘军花,叶慧敏,朱伟云,毛胜勇*. 寡果糖诱导瘤胃急性酸中毒对山羊瘤胃发酵、蹄组织结构及炎症因子、金属蛋白酶表达的影响,动物营养学报,2016, 28(7): 2260-2268.

59. 郭长征,冯泮飞,薛春旭,叶慧敏,刘军花,毛胜勇*. 高精料饲粮添加槲皮素对山羊瘤胃发酵、瘤胃菌群数量及血清指标的影响. 动物营养学报. 2016, 28(9): 2839-2846.

60. 刘玉洁, 刘军花, 许婷婷, 毛胜勇*. 谷氨酰胺对饲喂高精料奶山羊盲肠黏膜形态及炎症因子mRNA表达的影响. 动物营养学报. 2014, 26(2): 513-518.

61. 刘玉洁,刘军花,许婷婷,毛胜勇*. 谷氨酰胺对饲喂高精料的奶山羊瘤胃上皮的保护效应研究。草业学报. 2014, 23(4): 293-299.

授权发明专利:

刘军花,张雅丽,孙大明,毛胜勇;龙胆酸在促进幼龄反刍动物生长及瘤胃发育中的应用;2022.11.25;中国发明专利;202210096954.1

刘军花,边高瑞,张凯,毛胜勇,孙大明,刘宁;一种促进幼龄反刍动物生长和瘤胃上皮发育的吲哚衍生物;2023.05.16;中国发明专利;202211059449.6

刘军花、毛胜勇、朱伟云、孙大明、刘理想;阿斯巴甜在动物饲料中作为添加剂在预防幼龄反刍动物断奶应激腹泻中的应用;2020.04.21;中国发明专利;201710585024.1

 

 

Copyright@2017南京农业大学国家动物消化道营养国际联合研究中心 版权所有 All Rights Reserved苏ICP备11055736号-3苏公网安备 32010202010029号 

地址:中国南京卫岗1号南京农业大学逸夫楼2045 邮编210095 行政办公室电话:025-84395523